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ABSTRACT
Current industrial testing practices often build test cases in a man-
ual manner, which degrades both the effectiveness and efficiency
of testing. To alleviate this problem, concolic testing generates test
cases that can achieve high coverage in an automated fashion. This
paper describes case studies of applying concolic testing to mobile
platform C programs that have been developed by Samsung Elec-
tronics. Through this work, we have detected new faults in the
Samsung Linux Platform (SLP) file manager and security library.

1. INTRODUCTION
In industry, testing is a standard method to improve the quality

of software. However, conventional testing methods frequently fail
to detect faults in target programs. One reason is that a program
can have an enormous number of different execution paths due to
conditional and loop statements. Thus, it is infeasible for a test en-
gineer to manually create test cases sufficient to detect subtle errors
in specific execution paths. In addition, it is technically challenging
to generate effective test cases in an automated manner.

These limitations are manifested in many industrial projects in-
cluding the mobile platform software for Samsung smartphones.
Since the smartphone market requires short time-to-market and
high reliability of software, Samsung Electronics decided to apply
advanced testing techniques to overcome the aforementioned lim-
itations. As a consequence, Samsung Electronics and KAIST set
out to investigate the practical application of Concolic testing tech-
niques to the mobile software domain for three years (2010-2012). 1

Concolic (CONCrete + symbOLIC) [10] testing (also known as dy-
namic symbolic execution [11] or white-box fuzzing [5]) combines
concrete dynamic analysis and static symbolic analysis to automat-
ically generate test cases to explore execution paths of a program.
A drawback of concolic testing, however, is that the coverage drops
if the target program has external binary libraries or complex oper-
ations such as pointer arithmetic. Thus, its effectiveness and effi-

1In addition to concolic testing, we considered random testing and
genetic algorithm-based testing [8]. However, in our experience,
the former rarely generates effective test cases for exceptional sce-
narios and the latter consumes huge time and requires manual tun-
ing for performance.
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ciency must be investigated further through case studies.
This paper reports case studies on the application of CREST [2]

(an open-source concolic testing tool) to mobile platform C pro-
grams developed by Samsung Electronics. Through the project, we
have detected new faults in the Samsung Linux Platform (SLP) file
manager and the security library: an infinite loop fault was detected
in the SLP file manager and an invalid memory access fault was de-
tected in the security library functions that handle large integers.

2. PROJECT BACKGROUND
In this project, the Samsung Linux Platform (SLP) file manager

and a security library were selected as target programs, because
they are important in the mobile phone products and proper targets
for C-based concolic testing tool in terms of size and complexity.
The SLP file manager is 18,000 lines long containing 85 functions.
The security library consists of 62 functions and is 8,000 lines long.

Our team consisted of one professor, one graduate student, and
one senior SQA engineer from Samsung Electronics. The original
developers for the SLP file manager and the security library could
not join this project due to other release deadlines. In addition,
there were no documents on the SLP file manager and the security
library. Thus, our team had to understand the target code from
scratch, which took almost half the time of the project.

We used CREST [2] as a concolic testing tool in the project for
the following reasons. First, we needed an open source concolic
testing tool for C programs that can be modified for mobile plat-
form C programs. KLEE [3] and CREST satisfy this requirement.
Second, from our experience on other embedded software such as a
flash memory device driver, KLEE is an order of magnitude slower
than CREST due to the overhead of the LLVM virtual machine
and the underlying bit-vector SMT solver. In contrast, CREST in-
serts probes in a target program to record symbolic path formulas
at runtime and uses a linear integer arithmetic SMT solver, which
achieves faster testing speed compared to KLEE. Last, we had rich
experience with CREST in other industrial case studies [6, 7].

We performed experiments on a VMware 2.5 virtual machine
that runs 32 bit Ubuntu 9.04, whose host machines were Windows
XP SP3 machines equipped with Intel i5 2.66 GHz and 4 GBytes
memory for the SLP file manager, and Intel Core2Duo 2 GHz and
2 GBytes memory for the security library. We could not run Linux
on a real machine due to Samsung’s security policy for visitors.

3. SLP FILE MANAGER
Figure 1 shows an overview of the SLP file manager. The file

manager (FM) monitors a file system and notifies corresponding
applications of events in the file system. FM uses an inotify
system call to register directories/files to monitor. When the direc-
tories and files that are being monitored change, the Linux kernel
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Figure 1: Overview of the SLP file manager

generates inotify events and adds these events to an inotify
queue. FM reads an event from the queue and notifies correspond-
ing programs of the event through a D-BUS inter-process commu-
nication interface. For example, when a user adds an MP3 file to a
file system, FM notifies a music player to update its playlist auto-
matically. A fault in FM can cause serious problems in SLP, since
many applications depend on FM.

3.1 Difficulties of Concolic Testing For FM
Embedded software such as FM often has different develop-

ment/runtime environments from those of non-embedded soft-
ware. Due to limited computational power, embedded software has
unique characteristics in its development/runtime environments,
which causes difficulties for concolic testing. We observed the fol-
lowing difficulties when we applied CREST to FM:

Complex build process: To instrument FM, we had to modify
the build process to use a compiler wrapper tool for CREST. The
wrapper tool, however, had limitations to handle the build process
for embedded software. For performance improvement, a build
process for embedded software utilizes complex optimization tech-
niques that are not normally used for non-embedded software. One
example was that a build script of FM enforced a specific order
of library linking options to optimize the FM binary. The CREST
wrapper tool, however, did not keep the order of given options, be-
cause the order of options for compilers/linkers does not affect the
build process of most non-embedded software. Thus, we had to
modify the CREST wrapper tool to keep the order of options. Un-
derstanding the optimized build process and modifying the build
script took around one fourth of the total project time.

Specialized execution environment: The target platform of FM
was Samsung Electronics’ own Linux platform based on the ARM
architecture. An original test environment was constructed on the
Scratchbox [1] ARM simulator, on which CREST runtime mod-
ules such as libcrest and Yices [4] could not execute, since only the
x86 binary of Yices was available. Thus, with help of the original
developers, we ported FM and related SLP libraries to the Scratch-
box x86 simulator and applied CREST to FM on the simulator. We
could not execute FM on x86 Linux directly, since FM had depen-
dencies on libraries that could run only on Scratchbox.

3.2 Symbolic Inputs
To apply concolic testing, we must specify symbolic variables in

a target program, based on which symbolic path formulas are gen-
erated at runtime. We specified inotify_event as a symbolic
input, whose fields are defined as follows:

struct inotify_event {
int wd; /*Watch descriptor */
uint32_t mask; /*Event */
uint32_t cookie;/*Unique cookie associating events*/
uint32_t len; /*Size of ’name’ field */
char name[];/*Optional null-terminated name */};

wd indicates the watch for which this event occurs. mask
contains bits that describe the type of an event that occurred
such as MOVE_IN (a file moved in the watched directory).
cookie is a unique integer that connects related events (e.g., pair-
ing IN_MOVE_FROM and IN_MOVE_TO). name[] represents a
file/directory path name for which the current event occurs and len
indicates a length of the file/directory path name. Among the five
fields, we specified wd, mask, and cookie as symbolic variables,
since name and len are optional fields. We built a symbolic envi-
ronment to provide an inotify_event queue that contains up
to two symbolic inotify_events.

3.3 Results
Two persons of our team worked to apply CREST to FM for

five weeks, but only two days per week. KAIST visited Samsung
Electronics every week to analyze target code, since Samsung Elec-
tronics could not release the target code to KAIST for intellectual
property issues. By using CREST, we detected an infinite loop fault
in FM in one second. After FM reads an inotify_event in the
queue, the event should be removed from the queue to process the
other events in the queue. For a normal event, the wd field of the
event is positive. Otherwise, the event is abnormal. We found that
FM did not remove an abnormal event from the queue and caused
an infinite loop when an abnormal event was added to the queue.

The FM code in Figure 2 handles inotify_events. FM
moves BUF_LEN bytes from the inotify_event queue
(event_queue) to buf (line 1). Then, it processes all events in
buf through the while loop (lines 3-13). Line 7 checks whether
or not a current event (ev) is normal. If ev is normal (line 10),
FM sends notifications to corresponding programs (line 11) and re-
moves ev by increasing i to indicate the next event (line 12). If ev
is abnormal, line 9 continues the loop without increasing i. Thus,
at the next iteration of the loop, FM reads the same abnormal ev
again, which causes an infinite loop. The original developers of FM
confirmed that this fault was real and fixed it. They had failed to de-
tect this fault for long time, because they had created only a dozen
test cases for FM in a manual manner. Those manual test cases did
not include test cases with abnormal events that were difficult to
generate for a real file system.

After the fault was corrected, CREST generated 138 test cases
in five minutes, which covered around 1750 branches among 8152
branches of FM. 2 These test cases did not violate any of the 14
assertions used to check return values of the FM functions for a
basic sanity check. Due to the limited time for the project (i.e., 2
days × 5 weeks), we could not perform more elaborate concolic
testing with more assertions and sophisticated symbolic inputs.

01:length = read(event_queue, buf, BUF_LEN);
02:i=0;
03:while( i<length ){
04: struct inotify_event *ev =
05: (struct inotify_event*)&buf[i];
06: ...
07: if (ev->wd<1) {
08: ERROR("invalid wd : %d",ev->wd);
09: continue;} //ev is NOT removed from the queue
10: else if (ev->mask & MOVE_IN){
11: ... // notify registered programs
12: i+=ev_len(ev);//ev is removed from the queue
13: } else if (ev->mask & DELETE){ ...

Figure 2: FM code to handle inotify_events

2CREST transforms a target program to an equivalent extended
version whose branches contain only one atomic condition per
branch. The branch coverage data in this paper is based on the
extended target program.
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4. SECURITY LIBRARY
The security library provides API functions for various security

applications on mobile platforms such as SSH (secure shell) and
DRM (digital right management). The security library consists of
the following three layers:

• Security functions:
This top layer provides security APIs such as AES (advanced
encryption standard) or SHA (secure hash algorithm) that are
frequently used by applications that handle security opera-
tions such as encryption and description.

• Complex math functions:
This middle layer provides complex mathematical functions
such as elliptic curve functions and large prime number gen-
erators that are used by the security functions.

• Large integer functions:
This bottom layer provides data structures for large integers
that cannot be represented by int and related operations
such as addition and subtraction of two large integers.

4.1 Difficulties of Concolic Testing for the Se-
curity Library

We targeted the large integer function layer in the security li-
brary, since the security function and complex math function layers
were not proper for us to apply concolic testing to for the follow-
ing reasons. First, these two layers frequently use external binary
math functions such as pow() and sqrt(), which decreases the
effectiveness of concolic testing (i.e., resulting in low coverage).
Second, the security function and complex math function layers
are hard for us to understand due to complex algorithms. Conse-
quently, it would be difficult to specify test oracles and to develop
appropriate symbolic inputs for these layers. In contrast to FM, the
security library could be compiled and tested on x86 Linux without
difficulty.

4.2 Symbolic Inputs
A large integer is represented by the L_INT data structure:

struct L_INT {
unsigned int size;//Allocated mem size in 32 bits
unsigned int len; //# of valid 32 bit elements
unsigned int *da; //Pointer to the dynamically

//allocated data array. da[len-1]
//are the most-significant bytes.

unsigned int sign;//0:non-negative, 1: negative }

For example, 4294967298 (=2 + 232) can be represented
by a L_INT data structure that contains size=3, len=2,
da={2,1,0} (i.e., 2×2(32×0) + 1×2(32×1) + 0×2(32×2)),
and sign=0. Large integers are passed as operands to large
integer functions such as L_INT_ModAdd(L_INT d,L_INT
n1,L_INT n2,L_INT m) that performs d=(n1+n2)%m.

To test large integer functions, we built a symbolic large inte-
ger generator that returns a symbolic large integer n (line 12) as
shown in Figure 3. Lines 3-5 allocate memory for n (line 5). Line
3 declares the size of n as a symbolic variable of unsigned
char type. Note that line 4 enforces a constraint on size such
that min≤size≤max. Without this constraint, size can be
255, which will generate unnecessarily many large integers, since
the number of generated large integers increases as the size in-
creases. Line 5 allocates memory for n using L_INT_Init().
For simple analysis, we assume that len==size (line 6). Lines 9-
10 fill out a data array of n, if necessary (line 8). For exam-
ple, we do not need to fill out a data array for d that is a result
of L_INT_ModAdd(L_INT d,...). Since we assume that

01:L_INT* gen_s_int(int min,int max,int to_fill) {
02: unsigned char size, i;
03: CREST_unsigned_char(size); //sym. var.
04: if(size> max || size< min) exit(0);
05: L_INT *n=L_INT_Init(size);
06: n->len=size;
07:
08: if(to_fill){// sym. value assignment
09: for(i=0; i < size; i++) {
10: CREST_unsigned_int(n->da[i]);}
11: if(n->da[size-1]==0) exit(0); }
12: return n;}

Figure 3: Symbolic large integer generator

size==len, we do not allow the most-significant bytes to be 0
(line 11).

Using gen_s_int(), we developed test drivers for all
14 large integer functions. For example, a test driver for
L_INT_ModAdd() is described in Figure 4, which generates
symbolic large integers whose values are between 2(32×1) − 1 and
2(32×4) − 1 ( lines 2-4). 3 dest and dest2 do not need to have
symbolic values (lines 5-6), since they will be assigned new val-
ues by L_INT_ModAdd(). This test driver checks whether or not
(n1+n2)%m == (n2+n1)%m at line 11.

01:void test_L_INT_ModAdd() {
02: L_INT *n1=gen_s_int(1,4,1),
03: *n2= gen_s_int(1,4, 1),
04: *m= gen_s_int(1,4, 1),
05: *dest= gen_s_int(1,4, 0), // to_fill=0
06: *dest2=gen_s_int(1,4, 0); // to_fill=0
07:
08: L_INT_ModAdd(dest,n1,n2,m);
09: L_INT_ModAdd(dest2,n2,n1,m);
10: // (n1+n2)%m == (n2+n1)%m
11: assert(L_INT_Cmp(dest,dest2)==0);}

Figure 4: Test driver for L_INT_ModAdd()

4.3 Results
Two persons of our team worked to apply CREST to the security

library for five weeks, but only one day per week. We inserted 40
assertions in the 14 large integer functions and found that all 14
large integer functions violated some assertions. CREST generates
7537 test cases for the 14 large integer functions in five minutes,
that cover 1284 of 1753 branches in the target functions. For ex-
ample, test_L_INT_ModAdd() generated 831 test cases that
covered 129 of 150 branches in L_INT_ModAdd(). 17 of the
831 test cases violated the assert() at line 11 of Figure 4.

We analyzed L_INT_ModAdd(L_INT d,L_INT n1,L_INT
n2,L_INT m) and found that this function did not check the
size of d. Thus, if the size of d is smaller than (n1+n2)%m,
this function writes beyond the allocated memory for d, which may
corrupt d later by other memory writes. To analyze the fault fur-
ther, we checked all functions in the security function and complex
math function layers that invoke L_INT_ModAdd() and found
that those functions set the size of d as equal to n1 and pass d
to L_INT_ModAdd(). We suspect that this fault has not been de-
tected, because (n1+n2)%m < m and m is usually smaller than
n1 in most mathematical formulas used in security applications.
Furthermore, many security algorithms assume that the bit size of
operands and the bit size of the result are fixed and same. However,
the large integer library should handle exceptional cases properly,
since there is no such guarantee in general. Failure to handle such

34 is the smallest number for the len that can represent all pos-
sible relations between lens of d, n1, n2, and m. For example,
1=len(m)<len(d)<len(n1)<len(n2)=4 where len(x)
is the len of a large integer x.
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exceptional scenarios can cause serious problems and the original
developers confirmed their mistakes.

5. LESSONS LEARNED

5.1 Covering Exceptional Scenarios
A main reason why the original developers could not detect the

faults discovered in this work is that these faults cause errors only
in corner-case/unexpected scenarios. For example, the fault in the
SLP file manager triggers errors only when a file system error oc-
curs (i.e., when an abnormal event is generated). It is very difficult
for a human engineer to detect faults that are manifest only in ex-
ceptional scenarios through manual testing. This is because devel-
opers tend to concentrate on the expected behaviors of the target
programs and often miss testing unexpected behaviors in a system-
atic manner. Another reason is that manual test case generation
consumes a large amount of time and there can be too many excep-
tional test cases.

Concolic testing aims to automatically generate test cases that
cover all possible execution paths including unexpected execution
scenarios of a target program. Thus, concolic testing can test un-
expected execution scenarios in an effective and efficient manner.
Through this work, we demonstrated that concolic testing could
detect corner-case faults in industrial software successfully.

5.2 A Concolic Testing Approach Suitable for
Embedded Software

Through this work, we identified issues to consider for success-
ful application of concolic testing to embedded software that runs
on specialized platforms (see Section 3.1). First, a concolic testing
approach that instruments a target source code is more appropri-
ate for embedded software than virtual machine based approach,
since the former is lighter than the latter in terms of porting efforts.
A virtual machine based approach [3, 11, 9] has an advantage in
terms of applicability; it can be applied to target programs in vari-
ous high-level languages, since the virtual machine works on low-
level bytecodes (e.g., LLVM bit-code, Java bytecode). However,
for an embedded target program, a virtual machine/emulator of a
specific target OS/HW platform (e.g., SLP or Samsung Bada OS
on ARM architecture) should be modified to add concolic testing
capability, which can cause huge overhead or may not be feasible.
Second, it is advantageous to separate the symbolic path formula
construction/solving mechanism from the runtime information ex-
traction mechanism (i.e., probes). Due to the limited computing
power of an embedded target platform, heavy computing activities
(the former) need to run on a powerful machine while the probes
(the latter) run on the embedded target platform and communicate
with the former. In this regard, an instrumentation based concolic
testing approach has benefits for embedded software.

5.3 Limitations of CREST
As noted in Sections 3.1 and 4.1, concolic testing in general has

limitations. We also noted specific limitations in CREST as fol-
lows. CREST uses a linear integer arithmetic (LIA) SMT solver to
solve generated symbolic path formulas. Thus, CREST cannot han-
dle full ANSI C semantics, especially those related to bit-level rep-
resentations. The first limitation we observed was that CREST did
not support bit-wise operators (&, |, «, etc) in a target program.
If a branch condition contains a bit-wise operator, that branch con-
dition cannot be negated to generate a new test case that will exe-
cute an uncovered path. For example, the SLP file manager used
bit-wise operators to check the type of an inotify event (see

line 10 of Figure 2). As a workaround, we replace bit-wise op-
erators with functions that contain loops to handle each bit of the
operands explicitly (we modified 11 lines in FM for this purpose).
The second limitation was that CREST could not analyze integer
overflow semantics of C programs as a default. The security li-
brary utilizes integer overflow explicitly (e.g., large integer func-
tions contain if(x+y >= x) {...} else {...} where x
and y are unsigned int types). In C semantics, x+y>=x is
always true for unsigned int x and y except when integer
overflow occurs (e.g., when x=232−1 and y=2). However, CREST
cannot generate a test case representing this integer overflow sce-
nario, since it generates symbolic path formulas in LIA only.

6. CONCLUSION AND FUTURE WORK
We reported our case studies to apply CREST on the SLP file

manager and the security library that were developed by Samsung
Electronics. We found new faults in both programs, which were
difficult to find through manual testing, since human engineers
often miss such exceptional scenarios. Samsung Electronics and
KAIST will continue collaboration for the next two years to over-
come the limitations of CREST observed in this work (see Sec-
tion 5.3) by modifying CREST to generate and solve symbolic path
formulas in bit-vector representations.
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