
Does Pair Programming Increase Developers Attention?
Ilenia Fronza, Alberto Sillitti, Giancarlo Succi, Jelena Vlasenko

Free University of Bolzano / Bozen
Piazza Domenicani – Domenikanerplatz, 3

I – 39100 Bolzano – Bozen, Italy
+39 0471 016138

{Ilenia.Fronza, Alberto.Sillitti, Giancarlo.Succi}@unibz.it, Jelena.Vlasenko@stud-inf.unibz.it

ABSTRACT
Pair programming is believed to improve quality and productivity
in software system development. Yet, it is not clear whether and
under what conditions this really occurs. In particular, it is
interesting to determine whether pair programming has an impact
on attention, which has been proven to have very beneficial
effects.

A 10 month empirical study has been conducted for a large Italian
manufacturing company, to determine if pair programming
increases the attention level among its developers. The results
strongly indicate that while working in pairs developers spend
more time in directly productive activities also with a higher level
of concentration and less switches to private tasks.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – Programming
Teams.

General Terms
Pair programming, Tools usage, Attention level.

1. INTRODUCTION
Pair programming (PP) is a practice in which two programmers
work collaboratively at the same computer on the same task [2].
Recently, PP has been largely advocated as a technique that

1. reduces defect rate [8; 9; 16 and many more],
2. improves the design and the structure of the code [5],
3. increases productivity [3; 19],
4. shortens the time-to-market [23],
5. enhances knowledge transfer and team communication

[7],
6. promotes job satisfaction [28],
7. facilitates integration of newcomers also reducing

training costs [14].

However, other works have contradicted such claims. [22] and
[17] have not found any positive effect of PP on development
time. A large experiment conducted by [1] evidences that PP
neither reduces the time required to correctly perform change
tasks nor increases the percentage of correct solutions. [4] reports
survey results from Microsoft about high skepticisms over pair
efficiency. It is therefore essential to determine what are the roots
of the benefits of PP, so it can be applied when it is most
appropriate.

This study aims at this goal, and specifically assesses whether PP
has a positive effect on raising the level of attention. There are
large evidences that keeping a high level of attention while
working, results in better work done faster and more effectively
[21; 26]. There are already claims that PP reduces the number of
interruptions [8]: both intrusions and self-initiated interruptions
[20] are reduced for two reasons:

(1) pairing “keeps developers honest”, increasing discipline
and improving time management: programmers are less
likely to skip writing unit tests, spend time web-surfing
or on personal email, or other violation of disciplines,
when they are working with a pair partner;

(2) other people are more reluctant to interrupt a pair than
they are to interrupt someone working alone.

This experimental work has been carried out in the IT department
of a large Italian manufacturing company that prefers to remain
anonymous. The company practices spontaneous PP – that is,
developers pair whenever they feel it is needed. The company
wanted to know what were the underlying mechanisms by which
PP could improve the overall development process and,
specifically, the analysis of the variations of the levels of attention
induced by PP. To this end, the work of the company has been
analyzed with PROM [10; 25], an AISEMA (Automated In-
Process Software Engineering Measurement and Analysis)
system, which tracks non-invasively developers' activities,
including the tools they use; suitable graphs, the Lean Graphs (L-
Graphs) [27], have been used to analyze the collected data.

The level of attention of the developers has been measured using
two classes variables:
� the amount of work that is devoted to directly productive

activities, along the lines of the key ideas of lean
management [24];

� the concentration that developers have on tools, measured
by the permanence on development tools and by the
frequency of being distracted to other activities.

The results of this investigation are that, while doing PP,
developers:
1. spend more time in directly productive activities;
2. have higher level of attention on tools, switching less often

between them;
3. move with lower frequencies to private tasks from directly

productive activities.

The remainder of the paper is organized as follows. In Section 2,
we present some related work; Section 3 describes the structure of
the study. Section 4 reports on the results. In Section 5 we discuss
limitations, conclusions, and future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE’11, September 5–9, 2011, Szeged, Hungary.
Copyright 2011 ACM 978-1-4503-0443-6/11/09…$10.00.

2. RELATED WORK
2.1 Level of Attention and Quality of Work
Several studies from organizational and work psychologists
evidence that keeping a high level of attention while working
results in better and faster work [21; 26]. Moreover, there have
been evidences that in the modern society people using computers
are exposed to the risk of losing such attention [13] and this
phenomenon is even more acute for software developers; limited
attention can cause both lower quality in specific work tasks and
an overall reduction of social ability [12]. This reduction may
severely impact the interactions with customers and colleagues,
with negative consequences on the overall development process.

Two major groups of means to increase the level of attention have
been identified in [18] :
� external stimulus that keeps the attention level high;
� an internal cognitive control mechanism to keep the

attention aligned with the priorities of the tasks to complete.

Research has primarily considered externally-driven intrusions on
individual workers, but the nature of work, the work environment
and the team configuration may all influence how workers handle
both externally and self-initiated interruptions. Moreover,
ethnographic observations indicate that interruption length,
content, type, occurrence time, and interrupter/interruptee
strategies differ for pair programmers versus solo programmers
[6].

2.2 Analysis of Data from Tool Usage
As discussed in [27], information on usage of tools is very
important to understand the software development process in a
company. To visualize this information we use L-Graphs [27]. An
L-Graph is composed by three kinds of elements:
� Node : a node represents a tool and the size of a node is

proportional to the percentage of time spent in the
corresponding tool.

� Arc : an arc represents the transitions between two tools. The
arc can be mono-directional, if there is a one-way switching
from one tool to another, and bi-directional, if there is a
two-way switching between tools.

� Label : nodes and arcs are annotated. The label near each
node contains the percentage of time spent in the tool and
average time of permanence in it before switching to
another one. The label near the arc provides information
about the frequency to switch from another.

In this study we focus on how developers switch from one tool to
another knowing also the average time they spend in a tool before
switching and the frequencies of switching between the tools, all
information reported in L-Graphs.

3. DATA COLLECTION
As mentioned, this industrial work has been carried out in the IT
department of a large Italian manufacturing company. The work
spanned a period of approximately 10 months. The team was
composed of 15 Italian developers having from 10 to 15 years of
programming experience. They all hold university degrees in
computer-related areas.

The programming language used is mainly C# under Windows XP
using Visual Studio as development environment. The team uses a
customized version of Extreme Programming that was adopted

about two years before the start of the study. In particular, they use
weekly iterations, PP, user stories, planning game, collective code
ownership, coding standards, and test-first. The company
practices spontaneous PP: this does not mean that the
management does not support PP, but that it leaves developers
free to implement it. The company wanted to know what were the
underlying mechanisms by which PP could improve the overall
development process and, specifically, the analysis of the
variations of the levels of attention induced by PP.

The company has a policy to record all the story points to measure
the associated velocity. Before the start of each story point,
developers specify the user story they work on. If they do PP, they
also specify with whom they pair. The team works in an open
space, where each member has his/her own personal workstation.
Therefore, there is a significant amount of informal
communication between developers.

We have collected the data non-invasively with PROM [10; 25],
an AISEMA system. Developers had access to the collected data
and were asked to constantly check its correctness. They never
reported any inconsistency about the collected data, Therefore, the
data set can be considered very reliable.

Furthermore, PROM allows to store headers of the visited web
pages. We analyzed keywords presented in the accessed web
pages and divided Browsing into two categories: Private
Browsing and Business Browsing. Business Browsing represents
all developers' activities when they use Internet for business
purposes like searching for information they need for their work.
Private Browsing represents all their private activities.

In this study we consider three variables:
� the relative amount of effort spent in directly productive

activities, measured by the percentage of effort spent in
Visual Studio;

� the average permanence in Visual Studio before switching
to another tool, measured in seconds;

� the amount of switches from directly productive activities to
to personal tasks, measured by the percentage of switches
from Visual Studio to Private Browsing.

4. RESULTS
We found that the developers used 26 different tools, but only 9 of
them were used regularly and by all the developers. These 9 tools
absorbed more than 80% of the total effort both for Solo
Programming and PP: Visual Studio, Browser, Outlook, Office,
Excel, Management Console, Messenger, Remote Desktop, and
Windows Explorer. Therefore, we focus only on them. Figure 1
contains the L-Graphs for Solo Programming (i.e., Solos) and PP.

In terms of the percentage of effort spent in Visual Studio, we
notice that the developers working alone spend 34% of their time
in this tool and when working in pairs 64% what is almost twice
more. It is also interesting to note that the time spent in Private
Browsing is halved.

For the average permanence in Visual Studio before switching to
another tool, we found that the developers when they work alone
stay in Visual Studio 28 seconds on the average and when they do
PP 128 seconds. These results indicate that developers are
definitely more focused on what they do when pairing. Actually,
this is a result that can be extended for almost any tool – when
working in pair people are more concentrated than when they

work alone.

The frequency of switching from Visual Studio to Private
Browsing is 0.05 during Solo programming and 0.02 - less than
half, during PP. These results indicate that PP decreases the
amount of time spent for non-productive activities. This is also a
further confirmation of the claims of [6] that interruptions are

different in Solo programming and in PP.

5. CONCLUSIONS, LIMITATIONS AND
FUTURE WORK
In this work we studied how an application of PP affects tools
usage and level of attention. We found that the developers
working in pairs exhibit higher levels of attention, that is, they are

Figure 1: L-Graphs for Solo programing and PP

more focused on their work, they switch less frequently between
tools, and devote more time to software development that to other
distracting activities.

This is clearly only one study based on one dataset, but the
industrial source of the data, the length of the observation (10
month) and the soundness of the collected data (an AISEMA tool
was used and the data was verified by the developers) make the
results relevant. A further indication of the quality of the results is
that these results were fed back to the company and were used by
the company to take strategic decisions on the structure and the
process of the development team – however, for confidentiality
we cannot detail such decision here.

Our future work consists of collecting further data to determine
the extensibility of our results.

6. REFERENCES
[1] Arisholm, E., Gallis, H., Dyba, T., and Sjoberg D.I.K.

Evaluating pair programming with respect to system
complexity and programmer expertise. IEEE Trans. Softw.
Eng., 33(2): pp. 65–86, 2007.

[2] Beck, K. Embrace Change with Extreme Programming.
Computer 32, 10, pp. 70 – 77, 1999.

[3] Beck, K. and Andres, C. 2000. Extreme Programming
Explained: Embrace Change. Addison-Wesley.

[4] Begel, A. and Nagappan, N. 2000. Pair Programming: what's
in it for me?. In Proceedings of the Second International
Symposium on Empirical Software Engineering and
Measurement (Kaiserslautern, Germany, October 09 - 10,
2008).

[5] Canfora, G., Cimitile, A., Garcia, F., Piattini, M., and
Visaggio, C.A. Evaluating performances of pair designing in
industry. Journal of Systems and Software 80, 8, pp. 1317-
1327, 2006.

[6] Chong, J. and Siino, R. Interruptions on software teams: a
comparison of paired and solo programmers. In Proceedings
of the Conference on Computer Supported Cooperative Work
(Banff, Alberta, Canada, November 04 – 08, 2006).

[7] Chong, J. and Hurlbutt, T. The social dynamics of pair
programming. In Proceedings of the 29th international
conference on Software Engineering, pp. 354–363,
Washington, DC, USA, 2007.

[8] Cockburn, A. and Williams, L. 2001. The costs and benefits of
pair programming. In G. Succi and M. Marchesi, editors, The
XP Series. Extreme Programming Examined, pp. 223-243.
Addison-Wesley.

[9] Coman, I.D., Sillitti, A. and Succi, G. 2008. Investigating the
Usefulness of Pair-Programming in a Mature Agile Team. In
Proceedings of the International Conference on Agile
Processes and eXtreme Programming in Software
Engineering. Limerick, Ireland, June, 2008.

[10] Coman, I.D., Sillitti, A., and Succi, G. A case-study on using
an Automated In-process Software Engineering Measurement
and Analysis system in an industrial environment. In
Proceedings of the International Conference on Software
Engineering (Vancouver, Canada, May, 2009).

[11] Czerwinski, M., Horvitz, E., and Wilhite, S. 2004. A diary
study of task switching and interruptions. In Proceedings of
Human factors in computing systems (Vienna, Austria, April
24, 2004).

[12] Dukas, R. Behavioural and ecological consequences of
limited attention, Philosophical Transactions B of the Royal

Society 357 (2002), pp. 1539–1547.
[13] Falkinger, J. 2008. Limited Attention as the Scarce Resource

in an Information-Rich Economy. The Economic Journal 118,
532 (2008), pp. 1596–1620.

[14] Fronza, I., Sillitti, A., and Succi, G. 2009. An Interpretation
of the Results of the Analysis of Pair Programming During
Novices Integration in a Team. In Proceedings of the
International Symposium on Empirical Software Engineering
(Lake Buena Vista, Florida, 15-16 October, 2009).

[15] Fronza, I., Sillitti, A., Succi, G., and Vlasenko, J.
Understanding how novices are integrated in a team analysing
their tool usage. In Proceedings of the International
Conference on Software and System Process (Honolulu,
Hawaii, 21-22 May, 2011).

[16] Heiberg, S., Puus, U., Salumaa, P., and Seeba, A. Pair-
Programming Effect on Developers Productivity. In
Proceedings of the International Conference on Agile
Processes and eXtreme Programming in Software
Engineering (Genova, Italy, May 26 - 29, 2003).

[17] Hulkko, H. and Abrahamsson, P. A multiple case study on the
impact of pair programming on product quality. In ICSE ’05:
Proceedings of the 27th International Conference on Software
Engineering, pp. 495–504, New York, NY, USA, 2005.

[18] Lavie, N., Hirst, A., de Fockert, J.W., and Viding, E. 2004.
Load theory of selective attention and cognitive control.
Journal of Experimental Psychology 133, 3 (2004), 339–354.

[19] Lui, K.M. and Chan, K.C.C. When does a pair outperform
two individuals? In Proceedings of the 4th international
conference on Extreme programming and agile processes in
software engineering, pp. 225–233, Berlin, Heidelberg, 2003.

[20] McFarlane, D. Comparison of four primary methods for
coordinating the interruption of people in human-computer
interaction. Human-Computer Interaction 17, 1, pp. 63 – 139,
2002.

[21] Marchington, M. and Wilkinson, A. 2005. Human Resource
Management at Work, Chartered Institute of Personnel &
Development.

[22] Nawrocki, J. and Wojciechowski, A. Experimental evaluation
of pair programming. In Proceedings of the European
Software Control and Metrics Conference (ESCOM), 2001.

[23] Phongpaibul, M. and Boehm, B. A replicate empirical
comparison between pair development and software
development with inspection. In Proceedings of the First
International Symposium on Empirical Software Engineering
and Measurement, pp. 265–274, Washington, DC, USA, 2007.

[24] Poppendieck, M. and Poppendieck, T. 2003. Lean software
development: an Agile toolkit. Addison Wesley.

[25] Sillitti, A., Janes, A., Succi, G., and Vernazza, T. 2003.
Collecting, Integrating and Analyzing Software Metrics and
Personal Software Process Data. In Proceedings of the
Conference on EUROMICRO, Antalya, Turkey, September
2003.

[26] Stellman J.M., editor. 1998. International Labour Office.
Encyclopedia of Occupational Health and Safety. Geneva:
International Labour Office.

[27] Sillitti, A., Succi, G, and Vlasenko, J. Toward a better
understanding of tool usage. In Proceedings of the
International Conference on Software Engineering, Honolulu,
Hawaii, May, 2011.

[28] G. Succi, W. Pedrycz, M. Marchesi, and L. Williams.
Preliminary analysis of the effects of pair programming on job
satisfaction. In In Proceedings of the 3rd International
Conference on Extreme Programming, pp. 212–215, 2002.

